Investigations of space magnetism at the Crimean Astrophysical Observatory. II. Direct spectropolarimetric measurements of stellar magnetic fields

Keywords: Magnetic fields, polarization, instrumentation: polarimeters, stars: atmospheres, stars: magnetic fields

Abstract

The research on stellar magnetism in the Crimea was initiated by pioneer works of A.B. Severny, V.E. Stepanov, and D.N. Rachkovsky. Today, the study of stellar magnetic fields is a key field of research at the Crimean Astrophysical Observatory (CrAO). The 2.6 m Shajn telescope equipped with the echelle spectrograph ESPL, CCD, and Stokesmeter (a circular polarization analyzer) allows us to study the magnetic field of bright stars up to 5m–6m.

The Single Line (SL) technique is developed for measuring magnetic fields at СrAO. This technique is based on the calculation of Zeeman effect in individual spectral lines. A key advantage of the SL technique is its ability to detect local magnetic fields on the surface of stars. 

Many results in the field of direct measurements of stellar magnetic fields were obtained at CrAO for the first time. In particular, the magnetic field on supergiants (ε Gem), as well as a number of subgiants, giants, and bright giants was first detected. This, and investigations of other authors, confirmed the hypothesis that a magnetic field is generated at all stages of the evolution of late-type stars, including the stage of star formation. The emergence of large magnetic flux tubes at the surface of stars of V-IV-III luminosity classes (61 Cyg A, β Gem, β Aql) was first registered. For β Aql, the behavior of a magnetic field with an activity cycle in subgiants was first established. Using long-term Crimean spectroscopic and spectropolarimetric observations of α Lyr, the 22-year variability cycle of the star, supposedly associated with meridional flows, is confirmed. Magnetic field variability with the pulsation period was first detected for different types of pulsating variables: the classical Cepheid β Aql, the low-amplitude β Cep-type variable γ Peg, and others.

In this review we cover more than a half-century history of the formation of the Crimean scientific school for high-precision direct measurements of stellar magnetic fields.

Downloads

Download data is not yet available.

References

Auriere M., Wade G.A., Konstantinova-Antova R., et al., 2009. Astron. Astrophys., vol. 504, p. 231.

Bailey J.D., Grunhut J., and Landstreet J.D., 2015. Astron. Astrophys., vol. 575, p. A115.

Baklanova D., Plachinda S., Mkrtichian D., Han I., Kim K.-M., 2011. Astron. Nachr., vol. 332, p. 939.

Baklanova D., Mkrtichian D., Plachinda S., Baklanov A., 2017. In Balega Y.Y., Kudryavtsev D.O., Romanyuk I.I., Yakunin I.A. (Eds), Stars: From Collapse to Collapse, Proceedings of a Conference Held at Special Astrophysical Observatory, 2016. Astron. Soc. Pac., San Francisco: ASP, p. 255.

Bedford D.K., Chaplin W.J., Davies A.R., et al., 1995. Astron. Astrophys., vol. 293, p. 377.

Borra E.F. and Vaughan A.H., 1977. Astrophys. J., vol. 216, p. 462.

Borra E.F., Fletcher J.M., Poeckert R., 1981. Astrophys. J., vol. 247, p. 569.

Borra E.F., Edwards G., Mayor M., 1984. Astrophys. J., vol. 284, p. 211.

Butkovskaya V.V., Plachinda S.I., 2007. Astron. Astrophys., vol. 469, p. 1069.

Butkovskaya V., Plachinda S., Valyavin G, Baklanova D., Lee B.-C., 2011. Astron. Nachr., vol. 332, p. 956.

Butkovskaya V.V., 2014. Bull. Crim. Astrophys. Observ., vol. 110, p. 80.

Butkovskaya V.V., Plachinda S.I., Bondar’ N.I., Baklanova D.N., 2017a. Astron. Nachr., vol. 338, p. 896.

Butkovskaya V.V., Plachinda S.I., Pankov N.F., 2017b. Astron. Nachr., vol. 338, p. 938.

Butkovskaya V.V. and Plachinda S.I., 2019. Kinem. Phys. Celest. Bodies, vol. 35, p. 95.

Donati J.-F., Semel M., Carter B.D., et al., 1997. Mon. Not. Roy. Astron. Soc., vol. 291. p. 658.

Donati J.-F., Collier Cameron A., Semel M., et al., 2003. Mon. Not. Roy. Astron. Soc., vol. 345, p. 1145.

Donati J.-F., Landstreet J.D., 2009. Ann. Rev. Astron. Astrophys., vol. 47, p. 333.

Gershberg R.E., 2005. Solar-Type Activity in Main-Sequence Stars. Berlin: Springer.

Gershberg R.E., 2015. Solar-Type Activity in Main-Sequence Stars. Simferopol: Antikva. (In Russ.)

Gershberg R.E., Kleeorin N.I., Pustil’nik L.A., Shlyapnikov A.A., 2020. Physics of middle- and low-mass stars with the solar-type activity. Moscow: FIZMATLIT. (In Russ.)

Grunhut J.H., Wade G.A., Hanes D.A., Alecian E., 2010. Mon. Not. Roy. Astron. Soc., vol. 408, p. 2290

Johns-Krull C.M. and Valenti J.A., 1996. Astrophys. J., vol. 459, p. L95.

Johns-Krull C.M., Valenti J.A., Hatzes A.P., and Kanaan A., 1999a. Astrophys. J., vol. 510, p. L41.

Johns-Krull C.M., Valenti J.A., and Koresko C., 1999b. Astrophys. J., vol. 516, p. 900.

Han Inwoo, Valyavin G., Galazutdinov G., et al., 2018. Mon. Not. Roy. Astron. Soc., vol. 479, p. 1427.

Hubrig S., Plachinda S.I., Hunsch M., and Schroder K.-P., 1994. Astron. Astrophys., vol. 291, p. 890.

Kim K.-M., Han I., Valyavin G., et al., 2007. Publ. Astron. Soc. Pacific., vol. 119, p. 1052.

Kochukhov O., Bagnulo S., Wade G.A., et al., 2004. Astron. Astrophys., vol. 414, p. 613.

Lagutin A.F., Plachinda S.I., Shakhovskoy D.N., et al., 2019. Izv. Krym. Astrofiz. Observ., vol. 115, no. 1, pp. 53–62. (In Russ.)

Merezhin V.P., 2001. Vega: The Analysis and Interpretation of Observation Data. Kazan.

Obridko V.N., and Nagovitsyn Yu.A., 2017. Solar activity, cyclicity and prognosis methods. St. Petersburg: BBM. (In Russ.)

Plachinda S.I., 2000. Astron. Astrophys., vol. 360, p. 642.

Plachinda S.I., 2004a. Multi-Wavelength Investigations of Solar Activity, Proc. IAU Symp. No. 223. Cambridge Univ. Press, p. 689.

Plachinda S.I., 2004b. In Videen G., Yatskiv Ya.S., Mishhenko M.I. (Eds), Photopolarimetry in Remote Sensing. Kluwer Academic Publishers, p. 351.

Plachinda S.I., 2005. Astrophysics, vol. 48, p. 9.

Plachinda S.I., 2014. Bull. Crim. Astrophys. Observ., vol. 110, p. 17.

Plachinda S.I., and Tarasova T.N., 1999. Astrophys. J., vol. 514, p. 402.

Plachinda S.I., and Tarasova T.N., 2000. Astrophys. J., vol. 533, p. 1016.

Plachinda S., Shulyak D., Pankov N., 2019. Astron. Astrophys. Trans., vol. 31, p. 323, arXiv:1910.01501.

Prysiazhnyi A.I., Stodilka M.I., Shchukina N.G., 2018. Kinem. Phys. Celest. Bodies, vol. 34, p. 277.

Rachkovsky D.N., 1962. Izv. Krymsk. Astrofiz. Observ. vol. 28, p. 259.

Radick Richard R., Lockwood G.W., Skiff B.A., Baliunas S.L., 1998. Astrophys. J. Suppl. Ser., vol. 118, p. 239.

Saar S.H., 1994. In Rabin D.M. et al. (Eds), Infrared Solar Physics, IAU Symp. No. 154. Dordrecht: Kluwer, p. 493.

Saar S.H., and Linsky J.L., 1985. Astrophys. J., vol. 299, p. L47.

Semel M., Donati J.-F., and Rees D.E., 1993. Astron. Astrophys., vol. 278, p. 231.

Severny A., 1970. Astrophys. J., vol. 159, p. L73.

Severny A.B., Kuvshinov V.M., and Nikulin N.S., 1974. Izv. Krymsk. Astrofiz. Observ., vol. 50, p. 3. (In Russ.)

Skulsky M.Yu., 1982. Pis’ma Astron. Zh., vol. 8, p. 238.

Skulsky M.Yu., and Plachinda S.I., 2004. The A-Star Puzzle. IAU Symposium No. 224. Cambridge Univ. Press, p. 119.

Tarasova T.N., 2002. Astron. Rep., vol. 46, p. 474.

Tarasova T.N., Plachinda S.I., and Rumyantsev V.V., 2001. Astron. Rep., vol. 45, p. 475.

Vasil’yev I.A., Merezhin V.P., Nalimov V.N., Novosyolov V.A., 1989. Inf. Bull. Var. Stars, no. 3308.

Wade G.A., Chadid M., Shorlin S.L.S., Bagnulo S., and Weiss W.W., 2002. Astron. Astrophys., vol. 392, p. L17.

Abstract views: 14
PDF downloads: 9
Published
2020-07-16
How to Cite
Plachinda S., Butkovskaya V., 2020. Izvestiya Krymskoi Astrofizicheskoi Observatorii, vol. 116, no. 1, pp. 45-62. DOI: 10.31059/izcrao-vol116-iss1-pp45-62
Section
To the 75th anniversary of CrAO