Dynamic processes in an active region in the initial and impulsive phase of the eruptive flare event on june 7, 2011

  • Artur Babin Crimean Astrophysical Observatory, Nauchny, 298409
  • Aleksandra Koval' Crimean Astrophysical Observatory, Nauchny, 298409
Keywords: Sun, solar activity, eruptive filament and flares

Abstract

We present the results of an analysis of Hα monochromatic and spectral observations of an impressive filament eruption during the eruptive flare on June 7, 2011 obtained at the Crimean Astrophysical Observatory. Our ground-based observations are combined with data acquired by multiple instruments onboard the Solar Dynamics Observatory (SDO/AIA, SDO/HMI). The evolution and dynamics of the eruptive process, the cause of eruption, the structure of the line-of-sight velocity field and fine internal structure of the eruptive filament are studied and a number of physical parameters in the eruptive filament are determined.
The results of the analysis have shown that: 1) The evolution of the filament eruption consists of two phases: the slow-rise phase, which began about two hours before the flare onset, and the fast-rise phase, which began almost simultaneously with the start of the flare. 2) The eruptive filament had a very complex internal structure and complicated line-of-sight velocity field. The filament does not erupt as a single structure. Several discrete massive absorption fragments are seen with a large number of fine-structured elements inside fragments with different velocities, as well as many plasma blobs that detach from the fragments. 3) The movement of the filament fragments is a combination of rotational movement around the axis of the main fragment and a bulk motion towards the observer as they erupt. The velocities of such plasma movements are determined. 4) Hα line profiles show a large variety of contrast values, Doppler half-widths and Doppler shifts in eruptive filament elements.

Downloads

Download data is not yet available.

References

Коваль А.Н., 1965. Изв. Крымск. Астрофиз. Обсерв. Т. 33. С. 138. [Koval' A.N., 1965. Izv. Krymsk. Astrofiz. Observ., vol. 33, p. 138. (In Russ.)]

Bruzek A., 1967. Solar Phys., vol. 2, p. 451.

Carlyle J., Williams D.R., van Driel-Gesztelyi L., et al., 2014. Astrophys. J., vol. 788, p. 25.

Cheng X., Zhang J., Olmedo O., et al., 2012. Astrophys. J., vol. 745, p. L5.

Chifor C., Tripathi D., Mason H.E., and Dennis B.R., 2007. Astron. Astrophys, vol. 472, p. 967.

De Jager C. and Svestka Z., 1985. Solar Phys., vol. 100, p. 435.

Fainshtein V.G., Egorov Y.I., and Rudenko G.V., 2017. Geomagnetism and Aeronomy, vol. 57, no. 7, p. 906.

Gilbert H.R., Inglis A.R., Mays M.L., et al., 2013. Astrophys. J. Lett., vol. 776, p. L12.

Inglis A.R. and Gilbert H.R., 2013. Astrophys. J., vol. 777, p. 30.

Innes D.E., Cameron, R.H., Fletcher L., et al., 2012. Astron. Astrophys., vol. 540, p. L10.

Kahler S.W., Moore R.L., Kane S.R. and Zirin H., 1988. Astrophys. J., vol. 328, pp. 824-829.

Khan J.I., Uchida Y., McAllister A.H., et al., 1998. Astron. Astrophys., vol. 336, p. 753.

Kubota J., Kitai R., Tohmura I., and Uesugi A., 1992. Solar Phys., vol. 139, p. 65.

Kurokawa H., Hanaoka Y., Shibata K., and Uchida Y., 1987. Solar Phys., vol. 108, p. 257.

Lemen J.R., Title R., Akin D.J., et al., 2012. Solar Phys., vol. 275, p. 17.

Li T., Zhang Y., Yang S., and Liu V., 2012. Astrophys. J., vol. 746, p. L103.

Martin S.F., 1989. Solar Phys., vol. 121, no. 1/2, p. 215.

Martin S.F. and Ramsey H.E., 1972. in McIntosh P.S. and Dryer M. (Eds), Solar Activity Observation and Prediction, p. 371.

Martres M., Mouradian Z., and Soru-Escaunt I., 1980. in Moriyama F. and Henoux J.C. (Eds), Proceedings of the Japan-France Seminar on Solar Physics, p. 188.

McAllister A.H., Kurokawa H., Shibata K., Nitta N., 1996. Solar Phys., vol. 169, p. 123.

McAllister A.H., Uchida Y., Tsuneta S., Strong K.T., 1992. Publ. Astron. Soc. Japan, vol. 44, p. L205.

Moore R.L. and Roumeliotis G., 1991. in Svestka Z., et al. (Eds), Proceedings of Colloquium No. 133 of IAU, Eruptive Solar Flares, Springer-Verlag Berlin Heidelberg, vol. 399, p. 69.

Morimoto T. and Kurokawa H., 2003. Publ. Astron. Soc. Japan, vol. 55, p. 518.

Ohman Y., 1969. Solar Phys., vol. 9, p. 427.

Pallavichini R., Serio S., and Vaiana G.S., 1977. Astrophys. J., vol. 216, p. 108.

Panasenko O., Martin S.F., Velli M., and Vourlidas A., 2013. Solar Phys., vol. 287, p. 391.

Plunkett S.P., Vourlidas A., Simberova S., et al., 2000. Solar Phys., vol. 194, p. 371.

Raadu V.A., Malherbe J.M., Schmieder B. and Mein N., 1987. Solar Phys., vol. 109, p. 59.

Rompolt B., 1975. Solar Phys., vol. 41, p. 329.

Rust D.M., 1976. Solar Phys., vol. 47, p. 21.

Scherrer P.H., Schou J., Bush R.I., et al., 2012. Solar Phys., vol. 275, p. 229.

Schmahl E.J., Webb D.F., Woodgate B., et al., 1989. In Kundu M.R. et al. (Eds), Energetic Phenomena on the Sun, p.77.

Solov'ev A.A., 2012. Geomagnetism and Aeronomy, vol. 52, no. 8, p. 1062.

Sterling A.C. and Moore R.L., 2005. Astrophys. J., vol. 630, p. 1148.

Su Y. and van Ballegooijen A., 2013. Astrophys. J., vol. 764, p. 91.

Svestka Z. and Cliver E.W., 1992. In Svestka Z., et al. (Eds), Proceedings of Colloquium No. 133 of IAU, Eruptive Solar Flares, Springer-Verlag Berlin Heidelberg, vol. 339, p. 1.

Uddin W., Jain R., Yoshimura K., et al., 2004. Solar Phys., vol. 225, p. 325.

van Driel-Gesztelyi L., Baker D., Torok T., et al., 2014. Astrophys. J., vol. 788, p. 85.

Vrsnak B., 1990. Solar Phys., vol. 127, p. 129.

Webb D.F., Forbes T.G., Auras H., et al., 1994. Solar Phys., vol. 153, p. 73.

Webb D.F., Krieger A.S. and Rust D.M., 1976. Solar Phys., vol. 48, p. 159.

Williams D.R., Daker D. and van Driel-Gesztelyi L., 2013. Astrophys. J., vol. 764, p. 165.

Yardley S.L., Green L.M., Williams D.R., et al., 2016. Astrophys. J., vol. 827, p. 151.

Abstract views: 13
PDF downloads: 7
Published
2019-12-23
How to Cite
Babin A., Koval’ A., 2019. Izvestiya Krymskoi Astrofizicheskoi Observatorii, vol. 115, no. 1, pp. 12-21. DOI: 10.31059/izcrao-vol115-iss1-pp12-21
Section
Research articles